Thioridazine hydrochloride tablets are indicated for the management of schizophrenic patients who fail to respond adequately to treatment with other antipsychotic drugs. Due to the risk of significant, potentially life threatening, proarrhythmic effects with thioridazine treatment, thioridazine hydrochloride tablets should be used only in patients who have failed to respond adequately treatment with appropriate courses of other antipsychotic drugs, either because of insufficient effectiveness or the inability to achieve an effective dose due to intolerable adverse effects from those drugs. Consequently, before initiating treatment with thioridazine hydrochloride tablets, it is strongly recommended that a patient be given at least two trials, each with a different antipsychotic drug product, at an adequate dose, and for an adequate duration (see WARNINGS and CONTRAINDICATIONS).
However, the prescriber should be aware that thioridazine hydrochloride tablets have not been systematically evaluated in controlled trials in treatment refractory schizophrenic patients and its efficacy in such patients is unknown.
DOSAGE AND ADMINISTRATION
Adults
The usual starting dose for adult schizophrenic patients is 50 mg to 100 mg three times a day, with a gradual increment to a maximum of 800 mg daily if necessary. Once effective control of symptoms has been achieved, the dosage may be reduced gradually to determine the minimum maintenance dose. The total daily dosage ranges from 200 mg to 800 mg, divided into two to four doses.
Pediatric Patients
For pediatric patients with schizophrenia who are unresponsive to other agents, the recommended initial dose is 0.5 mg/kg/day given in divided doses. Dosage may be increased gradually until optimum therapeutic effect is obtained or the maximum dose of 3 mg/kg/day has been reached.
In the recommended dosage ranges with thioridazine hydrochloride most side effects are mild and transient.
Phenothiazine Derivatives: It should be noted that efficacy, indications, and untoward effects have varied with the different phenothiazines. It has been reported that old age lowers the tolerance for phenothiazines. The most common neurological side effects in these patients are parkinsonism and akathisia. There appears to be an increased risk of agranulocytosis and leukopenia in the geriatric population. The physician should be aware that the following have occurred with one or more phenothiazines and should be considered whenever one of these drugs is used:
Thioridazine hydrochloride tablet use should be avoided in combination with other drugs that are known to prolong the QTc interval and in patients with congenital long QT syndrome or a history of cardiac arrhythmias.
Reduced cytochrome P450 2D6 isozyme activity drugs that inhibit this isozyme (e.g., fluoxetine and paroxetine) and certain other drugs (e.g., fluvoxamine, propranolol, and pindolol) appear to appreciably inhibit the metabolism of thioridazine. The resulting elevated levels of thioridazine would be expected to augment the prolongation of the QTc interval associated with thioridazine and may increase the risk of serious, potentially fatal, cardiac arrhythmias, such as Torsades de pointes type arrhythmias. Such an increased risk may result also from the additive effect of coadministering thioridazine with other agents that prolong the QTc interval. Therefore, thioridazine is contraindicated with these drugs as well as in patients, comprising about 7% of the normal population, who are known to have a genetic defect leading to reduced levels of activity of P450 2D6 (see WARNINGS and PRECAUTIONS).
In common with other phenothiazines, thioridazine is contraindicated in severe central nervous system depression or comatose states from any cause including drug induced central nervous system depression (see WARNINGS). It should also be noted that hypertensive or hypotensive heart disease of extreme degree is a contraindication of phenothiazine administration.
WARNINGS AND PRECAUTIONS:
Reduced cytochrome P450 2D6 isozyme activity, drugs which inhibit this isozyme (e.g., fluoxetine and paroxetine), and certain other drugs (e.g., fluvoxamine, propranolol, and pindolol) appear to appreciably inhibit the metabolism of thioridazine. The resulting elevated levels of thioridazine would be expected to augment the prolongation of the QTc interval associated with thioridazine and may increase the risk of serious, potentially fatal, cardiac arrhythmias, such as Torsades de pointes type arrhythmias. Such an increased risk may result also from the additive effect of coadministering thioridazine with other agents that prolong the QTc interval. Therefore, thioridazine is contraindicated with these drugs as well as in patients, comprising about 7% of the normal population, who are known to have a genetic defect leading to reduced levels of activity of P450 2D6 (see WARNINGS and CONTRAINDICATIONS).
Drugs That Inhibit Cytochrome P450 2D6
In a study of 19 healthy male subjects, which included 6 slow and 13 rapid hydroxylators of debrisoquin, a single 25 mg oral dose of thioridazine produced a 2.4-fold higher C and a 4.5-fold higher AUC for thioridazine in the slow hydroxylators compared to rapid hydroxylators. The rate of debrisoquin hydroxylation is felt to depend on the level of cytochrome P450 2D6 isozyme activity. Thus, this study suggests that drugs that inhibit P450 2D6 or the presence of reduced activity levels of this isozyme will produce elevated plasma levels of thioridazine. Therefore, the coadministration of drugs that inhibit P450 2D6 with thioridazine and the use of thioridazine in patients known to have reduced activity of P450 2D6 are contraindicated.
Drugs That Reduce the Clearance of Thioridazine Through Other Mechanisms
Fluvoxamine: The effect of fluvoxamine (25 mg b.i.d. for one week) on thioridazine steady-state concentration was evaluated in ten male inpatients with schizophrenia. Concentrations of thioridazine and its two active metabolites, mesoridazine and sulforidazine, increased 3-fold following coadministration of fluvoxamine. Fluvoxamine and thioridazine should not be coadministered.
Propranolol: Concurrent administration of propranolol (100 mg to 800 mg daily) has been reported to produce increases in plasma levels of thioridazine (approximately 50% to 400%) and its metabolites (approximately 80% to 300%). Propranolol and thioridazine should not be coadministered.
Pindolol: Concurrent administration of pindolol and thioridazine have resulted in moderate, dose related increases in the serum levels of thioridazine and two of its metabolites, as well as higher than expected serum pindolol levels. Pindolol and thioridazine should not be coadministered.
Drugs That Prolong the QTc Interval
There are no studies of the coadministration of thioridazine and other drugs that prolong the QTc interval. However, it is expected that such coadministration would produce additive prolongation of the QTc interval and, thus, such use is contraindicated.
Information for Patients:
Patients should be informed that thioridazine has been associated with potentially fatal heart rhythm disturbances. The risk of such events may be increased when certain drugs are given together with max thioridazine. Therefore, patients should inform the prescriber that they are receiving thioridazine treatment before taking any new medication. Given the likelihood that some patients exposed chronically to antipsychotics will develop tardive dyskinesia, it is advised that all patients in whom chronic use is contemplated be given, if possible, full information about this risk. The decision to inform patients and/or their guardians must obviously take into account the clinical circumstances and the competency of the patient to understand the information provided.
Many of the symptoms observed are extensions of the side effects described under ADVERSE REACTIONS. Thioridazine can be toxic in overdose, with cardiac toxicity being of particular concern. Frequent ECG and vital sign monitoring of overdosed patients is recommended. Observation for several days may be required because of the risk of delayed effects.
Signs and Symptoms
Effects and clinical complications of acute overdose involving phenothiazines may include:
Cardiovascular: Cardiac arrhythmias, hypotension, shock, ECG changes, increased QT and PR intervals, non-specific ST and T wave changes, bradycardia, sinus tachycardia, atrioventricular block, ventricular tachycardia, ventricular fibrillation, Torsades de pointes, myocardial depression.
Central Nervous System: Sedation, extrapyramidal effects, confusion, agitation, hypothermia, hyperthermia, restlessness, seizures, areflexia, coma.
Autonomic Nervous System: Mydriasis, miosis, dry skin, dry mouth, nasal congestion, urinary retention, blurred vision.
Respiratory: Respiratory depression, apnea, pulmonary edema.
Gastrointestinal: Hypomotility, constipation, ileus.
Renal: Oliguria, uremia.
Toxic dose and blood concentration ranges for the phenothiazines have not been firmly established. It has been suggested that the toxic blood concentration range for thioridazine begins at 1 mg/dL, and 2 to 8 mg/dL is the lethal concentration range.
Treatment
An airway must be established and maintained. Adequate oxygenation and ventilation must be ensured. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias. Treatment may include one or more of the following therapeutic interventions: correction of electrolyte abnormalities and acid-base balance, lidocaine, phenytoin, isoproterenol, ventricular pacing, and defibrillation. Disopyramide, procainamide, and quinidine may produce additive QT-prolonging effects when administered to patients with acute overdosage of thioridazine and should be avoided (see WARNINGS and CONTRAINDICATIONS). Caution must be exercised when administering lidocaine, as it may increase the risk of developing seizures.
Treatment of hypotension may require intravenous fluids and vasopressors. Phenylephrine, levarterenol, or metaraminol are the appropriate pressor agents for use in the management of refractory hypotension. The potent α adrenergic blocking properties of the phenothiazines makes the use of vasopressors with mixed α and β adrenergic agonist properties inappropriate, including epinephrine and dopamine. Paradoxical vasodilation may result. In addition, it is reasonable to expect that the a adrenergic-blocking properties of bretylium might be additive to those of thioridazine, resulting in problematic hypotension.
In managing overdosage, the physician should always consider the possibility of multiple drug involvement. Gastric lavage and repeated doses of activated charcoal should be considered. Induction of emesis is less preferable to gastric lavage because of the risk of dystonia and the potential for aspiration of vomitus. Emesis should not be induced in patients expected to deteriorate rapidly, or those with impaired consciousness.
Acute extrapyramidal symptoms may be treated with diphenhydramine hydrochloride or benztropine mesylate. Avoid the use of barbiturates when treating seizures, as they may potentiate phenothiazine-induced respiratory depression. Forced diuresis, hemoperfusion, hemodialysis and manipulation of urine pH are of unlikely benefit in the treatment of phenothiazine overdose due to their large volume of distribution and extensive plasma protein binding. Up-to-date information about the treatment of overdose can often be obtained from a certified Regional Poison Control Center. Telephone numbers of certified Regional Poison Control Centers are listed in the Physicians’ Desk Reference **.
Patient Stories
What Other Doctors Think
Costs
Who Do I Talk To?
Find A Provider