References

Alprazolam

Boulenc, X., et al. (2016). “CYP3A4-based drug-drug interaction: CYP3A4 substrates’ pharmacokinetic properties and ketoconazole dose regimen effect.” Eur J Drug Metab Pharmacokinet 41(1): 45-54.

Gorski, J. C., et al. (1999). “Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily.” Xenobiotica 29(9): 931-944.

Greenblatt, D. J., et al. (1998). “Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences.” Clin Pharmacol Ther 64(3): 237-247.

Hirota, N., et al. (2001). “In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans.” Biopharm Drug Dispos 22(2): 53-71.

Tseng, E., et al. (2014). “Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide).” Drug Metab Dispos 42(7): 1163-1173.

Yasui, N., et al. (1996). “A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism.” Clin Pharmacol Ther 59(5): 514-519.

Amitriptyline

de Vos, A., et al. (2011). “Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients.” Pharmacogenomics J 11(5): 359-367.

Halling, J., et al. (2008). “The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population.” Br J Clin Pharmacol 65(1): 134-138.

Jiang, Z. P., et al. (2002). “The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects.” Eur J Clin Pharmacol 58(2): 109-113.

Olesen, O. V. and K. Linnet (1997). “Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes.” Pharmacology 55(5): 235-243.

Ryu, S., et al. (2017). “A Study on CYP2C19 and CYP2D6 Polymorphic Effects on Pharmacokinetics and Pharmacodynamics of Amitriptyline in Healthy Koreans.” Clin Transl Sci 10(2): 93-101.

Steimer, W., et al. (2004). “Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers.”Clin Chem 50(9): 1623-1633.

Steimer, W., et al. (2005). “Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy.” Clin Chem 51(2): 376-385.

Venkatakrishnan, K., et al. (1998). “Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4.” J Clin Pharmacol 38(2): 112-121.

Aripiprazole

Azuma, J., et al. (2012). “The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine.” Eur J Clin Pharmacol 68(1): 29-37.

Kim, J. R., et al. (2008). “Population pharmacokinetic modelling of aripiprazole and its active metabolite, dehydroaripiprazole, in psychiatric patients.” Br J Clin Pharmacol 66(6): 802-810.

Kubo, M., et al. (2005). “Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic ARIPIPRAZOLE.” Drug Metab Pharmacokinet 20(1): 55-64.

Kubo, M., et al. (2007). “Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: influence of CYP2D6 polymorphism.” Drug Metab Pharmacokinet 22(5): 358-366.

Suzuki, T., et al. (2014). “Effects of genetic polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia.” Ther Drug Monit 36(5): 651-655.

Asenapine

Lu, D., et al. (2017). “N-glucuronidation catalyzed by UGT1A4 and UGT2B10 in human liver microsomes: Assay optimization and substrate identification.” J Pharm Biomed Anal 145: 692-703.

Atomoxetine

Belle, D., et al. (2002). “Effect of Potent CYP2D6 Inhibition by Paroxetine on Atomoxetine Pharmacokinetics.” Journal of Clinical Pharmacology 42: 1219-1227.

Brown, J., et al. (2016). “Single Dose, CYP2D6 Genotype-Stratified Pharmacokinetic Study of Atomoxetine in Children with ADHD.” Clin. Pharmacol. Ther. 99(6): 642–650.

Byeon, J., et al. (2015). “Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites.” Arch. Pharm. Res. 38: 2083–2091.

Cui, Y., et al. (2007). “Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele.” British Journal of Clinical Pharmacology 64(4): 445-449.

Dinh, J., et al. (2016). “Characterization of Atomoxetine Biotransformation and Implications for Development of PBPK Models for Dose Individualization in Children.” Drug Metab. Dispos. 44: 1070–1079.

Fijal, B., et al. (2015). “CYP2D6 Predicted Metabolizer Status and Safety in Adult Patients With Attention-Deficit Hyperactivity Disorder Participating in a Large Placebo-Controlled Atomoxetine Maintenance of Response Clinical Trial.” The Journal of Clinical Pharmacology 55(10): 1167–1174.

Kim, S., et al. (2018). “Physiologically based pharmacokinetic modelling of atomoxetine with regard to CYP2D6 genotypes.” Scientific Reports 8: 12405.

Liang, B., et al. (2015). “Effect of 24 Cytochrome P450 2D6 Variants Found in the Chinese Population on Atomoxetine Metabolism in vitro.” Pharmacology 97: 78–83.

Matsui, A., et al. (2012). “Pharmacokinetics, Safety, and Tolerability of Atomoxetine and Effect of CYP2D6*10/*10 Genotype in Healthy Japanese Men.” Journal of Clinical Pharmacology 52: 388-403.

Michelson, D., et al. (2007). “CYP2D6 and Clinical Response to Atomoxetine in Children and Adolescents With ADHD.” J. Am. Acad. Child Adolesc. Psychiatry 46(2): 242-251.

Ring, B., et al. (2001). “Identification of The Human Cytochromes P450 Responsible for Atomoxetine Metabolism.” Drug Metab. Dispos. 30(3): 319–323.

Sauer, J., et al. (2003). “Disposition and Metabolic Fate of Atomoxetine Hydrochloride: The Role of CYP2D6 in Human Disposition and Metabolism.” Drug Metab. Dispos. 31(1): 98–107.

Trzepacz, P., et al. (2008). “CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD.” European Neuropsychopharmacology 18: 79–86.

Brexpiprazole(rely on PI)

Ishigooka, J., et al. (2018). “Pharmacokinetics and Safety of Brexpiprazole Following Multiple-Dose Administration to Japanese Patients With Schizophrenia.” J Clin Pharmacol 58(1): 74-80.

Bupropion

Benowitz, N. L., et al. (2013). “Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state.” Pharmacogenet Genomics 23(3): 135-141.

Chen, Y., et al. (2010). “The in vitro metabolism of bupropion revisited: concentration dependent involvement of cytochrome P450 2C19.” Xenobiotica 40(8): 536-546.

Faucette, S. R., et al. (2000). “Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity.” Drug Metab Dispos 28(10): 1222-1230.

Gao, L. C., et al. (2016). “The P450 oxidoreductase (POR) rs2868177 and cytochrome P450 (CYP) 2B6*6 polymorphisms contribute to the interindividual variability in human CYP2B6 activity.” Eur J Clin Pharmacol 72(10): 1205-1213.

Hesse, L. M., et al. (2004). “Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes.”Pharmacogenetics 14(4): 225-238.

Hesse, L. M., et al. (2000). “CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants.” Drug Metab Dispos 28(10): 1176-1183.

Hoiseth, G., et al. (2015). “Effect of CYP2B6*6 on Steady-State Serum Concentrations of Bupropion and Hydroxybupropion in Psychiatric Patients: A Study Based on Therapeutic Drug Monitoring Data.” Ther Drug Monit 37(5): 589-593.

Kharasch, E. D. and A. Crafford (2019). “Common Polymorphisms of CYP2B6 Influence Stereoselective Bupropion Disposition.” Clin Pharmacol Ther 105(1): 142-152.

Kirchheiner, J., et al. (2003). “Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6.” Pharmacogenetics 13(10): 619-626.

Ma, H., et al. (2018). “Effects of Genetic Polymorphisms of CYP2B6 on the Pharmacokinetics of Bupropion and Hydroxybupropion in Healthy Chinese Subjects.” Med Sci Monit 24: 2158-2163.

Sager, J. E., et al. (2016). “Stereoselective Metabolism of Bupropion to OH-bupropion, Threohydrobupropion, Erythrohydrobupropion, and 4′-OH-bupropion in vitro.”Drug Metab Dispos 44(10): 1709-1719.

Busprione

Foti, R. S., et al. (2010). “Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation.” Drug Metab Dispos 38(6): 981-987.

Kivisto, K. T., et al. (1997). “Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole.” Clin Pharmacol Ther 62(3): 348-354.

Kivisto, K. T., et al. (1999). “Interactions of buspirone with itraconazole and rifampicin: effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone.” Pharmacol Toxicol 84(2): 94-97.

Raghavan, N., et al. (2005). “Cyp2D6 catalyzes 5-hydroxylation of 1-(2-pyrimidinyl)-piperazine, an active metabolite of several psychoactive drugs, in human liver microsomes.” Drug Metab Dispos 33(2): 203-208.

Zhu, M., et al. (2005). “Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes.” Drug Metab Dispos 33(4): 500-507.

Carbamazepine

Barzaghi, N., et al. (1987). “Inhibition by erythromycin of the conversion of carbamazepine to its active 10,11-epoxide metabolite.” Br J Clin Pharmacol 24(6): 836-838.

Garg, S. K., et al. (1998). “Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy.” Clin Pharmacol Ther 64(3): 286-288.

Kerr, B. M., et al. (1994). “Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation.” Biochem Pharmacol 47(11): 1969-1979.

Laroudie, C., et al. (2000). “Carbamazepine-nefazodone interaction in healthy subjects.” J Clin Psychopharmacol 20(1): 46-53.

Miles, M. V. and M. B. Tennison (1989). “Erythromycin effects on multiple-dose carbamazepine kinetics.” Ther Drug Monit 11(1): 47-52.

Pearce, R. E., et al. (2008). “Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine.” Drug Metab Dispos 36(8): 1637-1649.

Pearce, R. E., et al. (2005). “Pathways of carbamazepine bioactivation in vitro: II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene.” Drug Metab Dispos 33(12): 1819-1826.

Pearce, R. E., et al. (2002). “Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites.” Drug Metab Dispos 30(11): 1170-1179.

Puranik, Y. G., et al. (2013). “Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy.” Pharmacogenomics 14(1): 35-45.

Cariprazine

FDA label

Chlordiazepoxide

Court, M. H., et al. (2004). “UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver.” J Pharmacol Exp Ther 310(2): 656-665.

He, X., et al. (2009). “Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion.” Br J Clin Pharmacol 68(5): 721-730.

Yang, T. J., et al. (1998). “Role of cDNA-expressed human cytochromes P450 in the metabolism of diazepam.” Biochem Pharmacol 55(6): 889-896.

Chlorpromazine

Muralidharan, G., et al. (1996). “Quinidine inhibits the 7-hydroxylation of chlorpromazine in extensive metabolisers of debrisoquine.” Eur J Clin Pharmacol 50(1-2): 121-128.

Wojcikowski, J., et al. (2010). “Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver–A comparison with other phenothiazines.” Biochem Pharmacol 80(8): 1252-1259.

Yoshii, K., et al. (2000). “Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.” Life Sci 67(2): 175-184.

Citalopram

Fudio, S., et al. (2010). “Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram.” Eur J Pharmacol 626(2-3): 200-204.

Ji, Y., et al. (2014). “Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.” Br J Clin Pharmacol 78(2): 373-383.

Tsuchimine, S., et al. (2018). “Effects of Cytochrome P450 (CYP) 2C19 Genotypes on Steady-State Plasma Concentrations of Escitalopram and its Desmethyl Metabolite in Japanese Patients With Depression.” Ther Drug Monit 40(3): 356-361.

Uckun, Z., et al. (2015). “The impact of CYP2C19 polymorphisms on citalopram metabolism in patients with major depressive disorder.” J Clin Pharm Ther 40(6): 672-679.

Yin, O. Q., et al. (2006). “Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients.” J Clin Psychopharmacol 26(4): 367-372.

Yu, B. N., et al. (2003). “Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19.” Drug Metab Dispos 31(10): 1255-1259.

Clomipramine

Nielsen, K. K., et al. (1992). “Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group.” Eur J Clin Pharmacol 43(4): 405-411.

Nielsen, K. K., et al. (1994). “Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms.” Clin Pharmacol Ther 55(5): 518-527.

Nielsen, K. K., et al. (1996). “The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways.” J Pharmacol Exp Ther 277(3): 1659-1664.

Wu, Z. L., et al. (1998). “Clomipramine N-demethylation metabolism in human liver microsomes.” Zhongguo Yao Li Xue Bao 19(5): 433-436.

Yokono, A., et al. (2001). “The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients.” J Clin Psychopharmacol 21(6): 549-555.

Clonazepam

Khoo, K. C., et al. (1980). “Influence of phenytoin and phenobarbital on the disposition of a single oral dose of clonazepam.” Clin Pharmacol Ther 28(3): 368-375.

Seree, E. J., et al. (1993). “Identification of the human and animal hepatic cytochromes P450 involved in clonazepam metabolism.” Fundam Clin Pharmacol 7(2): 69-75.

Toth, K., et al. (2016). “Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype.” Int J Neuropsychopharmacol 19(12).

Yukawa, E., et al. (2001). “Pharmacoepidemiologic investigation of a clonazepam-carbamazepine interaction by mixed effect modeling using routine clinical pharmacokinetic data in Japanese patients.” J Clin Psychopharmacol 21(6): 588-593.

Clorazepate

Court, M. H., et al. (2004). “UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver.” J Pharmacol Exp Ther 310(2): 656-665.

He, X., et al. (2009). “Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion.” Br J Clin Pharmacol 68(5): 721-730.

Yang, T. J., et al. (1998). “Role of cDNA-expressed human cytochromes P450 in the metabolism of diazepam.” Biochem Pharmacol 55(6): 889-896.

Clozapine

Bertilsson, L., et al. (1994). “Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test.” Br J Clin Pharmacol 38(5): 471-473.

Chang, W. H., et al. (1999). “In-vitro and in-vivo evaluation of the drug-drug interaction between fluvoxamine and clozapine.” Psychopharmacology (Berl) 145(1): 91-98.

Chetty, M., et al. (2009). “In vitro and in vivo evaluation of the inhibition potential of risperidone toward clozapine biotransformation.” Br J Clin Pharmacol 68(4): 574-579.

Cormac, I., et al. (2010). “A retrospective evaluation of the impact of total smoking cessation on psychiatric inpatients taking clozapine.” Acta Psychiatr Scand 121(5): 393-397.

Doude van Troostwijk, L. J., et al. (2003). “CYP1A2 activity is an important determinant of clozapine dosage in schizophrenic patients.” Eur J Pharm Sci 20(4-5): 451-457.

Dragovic, S., et al. (2013). “Characterization of human cytochrome P450s involved in the bioactivation of clozapine.” Drug Metab Dispos 41(3): 651-658.

Erickson-Ridout, K. K., et al. (2012). “Glucuronidation of the second-generation antipsychotic clozapine and its active metabolite N-desmethylclozapine. Potential importance of the UGT1A1 A(TA)(7)TAA and UGT1A4 L48V polymorphisms.” Pharmacogenet Genomics 22(8): 561-576.

Fabrazzo, M., et al. (2000). “Fluvoxamine increases plasma and urinary levels of clozapine and its major metabolites in a time- and dose-dependent manner.”J Clin Psychopharmacol 20(6): 708-710.

Fischer, V., et al. (1992). “The antipsychotic clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome P450 2D6.” J Pharmacol Exp Ther 260(3): 1355-1360.

Green, M. D. and T. R. Tephly (1996). “Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1.4 protein.” Drug Metab Dispos 24(3): 356-363.

Li, L. J., et al. (2012). “Population pharmacokinetics of clozapine and its primary metabolite norclozapine in Chinese patients with schizophrenia.” Acta Pharmacol Sin 33(11): 1409-1416.

Linnet, K. and O. V. Olesen (1997). “Metabolism of clozapine by cDNA-expressed human cytochrome P450 enzymes.” Drug Metab Dispos 25(12): 1379-1382.

Mori, A., et al. (2005). “UDP-glucuronosyltransferase 1A4 polymorphisms in a Japanese population and kinetics of clozapine glucuronidation.” Drug Metab Dispos 33(5): 672-675.

Ng, W., et al. (2009). “Clozapine exposure and the impact of smoking and gender: a population pharmacokinetic study.” Ther Drug Monit 31(3): 360-366.

Olesen, O. V. and K. Linnet (2000). “Fluvoxamine-Clozapine drug interaction: inhibition in vitro of five cytochrome P450 isoforms involved in clozapine metabolism.” J Clin Psychopharmacol 20(1): 35-42.

Ozdemir, V., et al. (2001). “CYP1A2 activity as measured by a caffeine test predicts clozapine and active metabolite steady-state concentrationin patients with schizophrenia.” J Clin Psychopharmacol 21(4): 398-407.

Spina, E., et al. (1998). “Effect of fluoxetine on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenia.” Int Clin Psychopharmacol 13(3): 141-145.

Spina, E., et al. (2000). “Plasma concentrations of clozapine and its major metabolites during combined treatment with paroxetine or sertraline.” Pharmacopsychiatry 33(6): 213-217.

Wang, C. Y., et al. (2004). “The differential effects of steady-state fluvoxamine on the pharmacokinetics of olanzapine and clozapine in healthy volunteers.” J Clin Pharmacol 44(7): 785-792.

Desipramine

Bergmann, T. K., et al. (2001). “Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6.” Eur J Clin Pharmacol 57(2): 123-127.

Brosen, K., et al. (1986). “Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype.” Clin Pharmacol Ther 40(5): 543-549.

Dahl, M. L., et al. (1993). “Polymorphic 2-hydroxylation of desipramine. A population and family study.” Eur J Clin Pharmacol 44(5): 445-450.

Dahl, M. L., et al. (1992). “Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population.” Clin Pharmacol Ther 51(1): 12-17.

Furman, K. D., et al. (2004). “Impact of CYP2D6 intermediate metabolizer alleles on single-dose desipramine pharmacokinetics.” Pharmacogenetics 14(5): 279-284.

Madsen, H., et al. (1995). “Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms–a population study.” Br J Clin Pharmacol 39(4): 433-439.

Shimoda, K., et al. (2000). “Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotype on the hydroxylation of desipramine.” Pharmacol Toxicol 86(6): 245-249.

Spina, E., et al. (1997). “Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study.” Eur J Clin Pharmacol 51(5): 395-398.

Steiner, E., et al. (1988). “Inhibition of desipramine 2-hydroxylation by quinidine and quinine.” Clin Pharmacol Ther 43(5): 577-581.

Desvenlafaxine

De Maio, W., et al. (2011). “Metabolism studies of Desvenlafaxine”. Journal of Bioequivalence & Bioavailability 3(7): 151-160.

Nichols, A., et al. (2013). “An Evaluation of the Potential of Cytochrome P450 3A4-Mediated Drug- Drug Interactions with Desvenlafaxine Use”. Journal of Bioequivalence & Bioavailability 5(1): 53-59.

Diazepam

Acikgoz, A., et al. (2009). “Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes.” Toxicol Appl Pharmacol 234(2): 179-191.

Andersson, T., et al. (1990). “Effect of omeprazole and cimetidine on plasma diazepam levels.” Eur J Clin Pharmacol 39(1): 51-54.

Andersson, T., et al. (1994). “Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms.” Br J Clin Pharmacol 38(2): 131-137.

Caraco, Y., et al. (1995). “Interethnic difference in omeprazole’s inhibition of diazepam metabolism.” Clin Pharmacol Ther 58(1): 62-72.

Court, M. H., et al. (2004). “UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver.” J Pharmacol Exp Ther 310(2): 656-665.

Gugler, R. and J. C. Jensen (1984). “Omeprazole inhibits elimination of diazepam.” Lancet 1(8383): 969.

He, X., et al. (2009). “Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion.” Br J Clin Pharmacol 68(5): 721-730.

Inomata, S., et al. (2005). “CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia.” Clin Pharmacol Ther 78(6): 647-655.

Kamali, F., et al. (1993). “The influence of steady-state ciprofloxacin on the pharmacokinetics and pharmacodynamics of a single dose of diazepam in healthy volunteers.” Eur J Clin Pharmacol 44(4): 365-367.

Kosuge, K., et al. (2001). “Effects of CYP3A4 inhibition by diltiazem on pharmacokinetics and dynamics of diazepam in relation to CYP2C19 genotype status.” Drug Metab Dispos 29(10): 1284-1289.

Krausz, K. W., et al. (2001). “Monoclonal antibodies specific and inhibitory to human cytochromes P450 2C8, 2C9, and 2C19.” Drug Metab Dispos 29(11): 1410-1423.

Ozdemir, M., et al. (1998). “Interaction between grapefruit juice and diazepam in humans.” Eur J Drug Metab Pharmacokinet 23(1): 55-59.

Qin, X. P., et al. (1999). “Effect of the gene dosage of CYP2C19 on diazepam metabolism in Chinese subjects.” Clin Pharmacol Ther 66(6): 642-646.

Saari, T. I., et al. (2007). “Voriconazole and fluconazole increase the exposure to oral diazepam.” Eur J Clin Pharmacol 63(10): 941-949.

Sohn, D. R., et al. (1992). “Incidence of S-mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in diazepam pharmacokinetics.” Clin Pharmacol Ther 52(2): 160-169.

Wan, J., et al. (1996). “The elimination of diazepam in Chinese subjects is dependent on the mephenytoin oxidation phenotype.” Br J Clin Pharmacol 42(4): 471-474.

Yang, T. J., et al. (1999). “Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism.” Drug Metab Dispos 27(1): 102-109.

Yang, T. J., et al. (1998). “Role of cDNA-expressed human cytochromes P450 in the metabolism of diazepam.” Biochem Pharmacol 55(6): 889-896.

Doxepin

Green, M. D., et al. (1995). “Expressed human UGT1.4 protein catalyzes the formation of quaternary ammonium-linked glucuronides.” Drug Metab Dispos 23(3): 299-302.

Haritos, V. S., et al. (2000). “Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin.” Pharmacogenetics 10(7): 591-603.

Kirchheiner, J., et al. (2005). “Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets.” Pharmacogenet Genomics 15(8): 579-587.

Kirchheiner, J., et al. (2002). “Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers.” Pharmacogenetics 12(7): 571-580.

Duloxetine

Lobo, E. D., et al. (2008). “In vitro and in vivo evaluations of cytochrome P450 1A2 interactions with duloxetine.” Clin Pharmacokinet 47(3): 191-202.

Lobo, E. D., et al. (2009). “Population pharmacokinetics of orally administered duloxetine in patients: implications for dosing recommendation.” Clin Pharmacokinet 48(3): 189-197.

Skinner, M. H., et al. (2003). “Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers.” Clin Pharmacol Ther 73(3): 170-177.

Escitalopram

Huezo-Diaz, P., et al. (2012). “CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP.” J Psychopharmacol 26(3): 398-407.

Ji, Y., et al. (2014). “Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.” Br J Clin Pharmacol 78(2): 373-383.

Jin, Y., et al. (2010). “Effect of age, weight, and CYP2C19 genotype on escitalopram exposure.” J Clin Pharmacol 50(1): 62-72.

Jukic, M. M., et al. (2018). “Impact of CYP2C19 Genotype on Escitalopram Exposure and Therapeutic Failure: A Retrospective Study Based on 2,087 Patients.” Am J Psychiatry 175(5): 463-470.

Rudberg, I., et al. (2008). “Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients.” Clin Pharmacol Ther 83(2): 322-327.

Eszopiclone

Tornio, A., et al. (2006). “The CYP2C8 inhibitor gemfibrozil does not increase the plasma concentrations of zopiclone.” Eur J Clin Pharmacol 62(8): 645-651.

Fluoxetine

LLerena, A., et al. (2004). “Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions.” Eur J Clin Pharmacol 59(12): 869-873.

Eap, C. B., et al. (2001). “Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers.” J Clin Psychopharmacol 21(3): 330-334.

Fjordside, L., et al. (1999). “The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine.” Pharmacogenetics 9(1): 55-60.

Hamelin, B. A., et al. (1996). “The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin.” Clin Pharmacol Ther 60(5): 512-521.

Liu, Z. Q., et al. (2001). “Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects.” Br J Clin Pharmacol 52(1): 96-99.

von Moltke, L. L., et al. (1997). “Human cytochromes mediating N-demethylation of fluoxetine in vitro.” Psychopharmacology (Berl) 132(4): 402-407.

Fluphenazine

Attia, T. Z., et al. (2012). “Comparison of cytochrome p450 mediated metabolism of three central nervous system acting drugs.” Chem Pharm Bull (Tokyo) 60(12): 1544-1549.

Ereshefsky, L., et al. (1985). “Effects of smoking on fluphenazine clearance in psychiatric inpatients.” Biol Psychiatry 20(3): 329-332.

Shin, J. G., et al. (1999). “Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6.” Drug Metab Dispos 27(9): 1078-1084.

Fluvoxamine

Fukasawa, T., et al. (2006). “Effects of caffeine on the kinetics of fluvoxamine and its major metabolite in plasma after a single oral dose of the drug.” Ther Drug Monit 28(3): 308-311.

Gerstenberg, G., et al. (2003). “Effects of the CYP 2D6 genotype and cigarette smoking on the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients.”Ther Drug Monit 25(4): 463-468.

Spigset, O., et al. (1997). “Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms.” Eur J Clin Pharmacol 52(2): 129-133.

Sugahara, H., et al. (2009). “Effect of smoking and CYP2D6 polymorphisms on the extent of fluvoxamine-alprazolam interaction in patients with psychosomatic disease.” Eur J Clin Pharmacol 65(7): 699-704.

Yoshimura, R., et al. (2002). “Interaction between fluvoxamine and cotinine or caffeine.” Neuropsychobiology 45(1): 32-35.

Guanfacine

Li, A., et al. (2018). “Development of Guanfacine Extended-Release Dosing Strategies in Children and Adolescents with ADHD Using a Physiologically Based Pharmacokinetic Model to Predict Drug–Drug Interactions with Moderate CYP3A4 Inhibitors or Inducers.” Pediatr. Drugs 20: 181–194.

Haloperidol

A, Llerena, et al. (2004). “Relationship between haloperidol plasma concentration, debrisoquine metabolic ratio, CYP2D6 and CYP2C9 genotypes in psychiatric patients.” Pharmacopsychiatry 37(2): 69-73.

Avenoso, A., et al. (1997). “Interaction between fluoxetine and haloperidol: pharmacokinetic and clinical implications.” Pharmacol Res 35(4): 335-339.

Avent, K. M., et al. (2006). “Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites.” Chem Res Toxicol 19(7): 914-920.

Barbhaiya, R. H., et al. (1996). “Investigation of pharmacokinetic and pharmacodynamic interactions after coadministration of nefazodone and haloperidol.” J Clin Psychopharmacol 16(1): 26-34.

Desai, M., et al. (2003). “Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6.” Pharmacogenomics J 3(2): 105-113.

Fang, J., et al. (1997). “Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol.” Cell Mol Neurobiol 17(2): 227-233.

Fang, J., et al. (2001). “In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes.” Drug Metab Dispos 29(12): 1638-1643.

Gasso, P., et al. (2013). “Relationship between CYP2D6 genotype and haloperidol pharmacokinetics and extrapyramidal symptoms in healthy volunteers.” Pharmacogenomics 14(13): 1551-1563.

Jann, M. W., et al. (1986). “Effects of smoking on haloperidol and reduced haloperidol plasma concentrations and haloperidol clearance.” Psychopharmacology (Berl) 90(4): 468-470.

Kalgutkar, A. S., et al. (2003). “Assessment of the contributions of CYP3A4 and CYP3A5 in the metabolism of the antipsychotic agent haloperidol to its potentially neurotoxic pyridinium metabolite and effect of antidepressants on the bioactivation pathway.” Drug Metab Dispos 31(3): 243-249.

Kato, Y., et al. (2012). “Human UDP-glucuronosyltransferase isoforms involved in haloperidol glucuronidation and quantitative estimation of their contribution.” Drug Metab Dispos 40(2): 240-248.

Mihara, K., et al. (1999). “Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia.” Clin Pharmacol Ther 65(3): 291-294.

Miller, D. D., et al. (1990). “The influence of cigarette smoking on haloperidol pharmacokinetics.” Biol Psychiatry 28(6): 529-531.

Pan, L. P., et al. (1997). “Characterization of the cytochrome P450 isoenzymes involved in the in vitro N-dealkylation of haloperidol.” Br J Clin Pharmacol 44(6): 557-564.

Park, J. Y., et al. (2006). “Combined effects of itraconazole and CYP2D6*10 genetic polymorphism on the pharmacokinetics and pharmacodynamics of haloperidol in healthy subjects.” J Clin Psychopharmacol 26(2): 135-142.

Shimoda, K., et al. (1999). “Lower plasma levels of haloperidol in smoking than in nonsmoking schizophrenic patients.” Ther Drug Monit 21(3): 293-296.

Someya, T., et al. (2003). “Effect of CYP2D6 genotypes on the metabolism of haloperidol in a Japanese psychiatric population.” Neuropsychopharmacology 28(8): 1501-1505.

Yasui-Furukori, N., et al. (2004). “Fluvoxamine dose-dependent interaction with haloperidol and the effects on negative symptoms in schizophrenia.” Psychopharmacology (Berl) 171(2): 223-227.

Iloperidone

Mutlib, A. E. and J. T. Klein (1998). “Application of liquid chromatography/mass spectrometry in accelerating the identification of human liver cytochrome P450 isoforms involved in the metabolism of iloperidone.”J Pharmacol Exp Ther 286(3): 1285-1293.

Pei, Q., et al. (2016). “Influences of CYP2D6(*)10 polymorphisms on the pharmacokinetics of iloperidone and its metabolites in Chinese patients with schizophrenia: a population pharmacokinetic analysis.” Acta Pharmacol Sin 37(11): 1499-1508.

Potkin, S. G., et al. (2013). “A thorough QTc study of 3 doses of iloperidone including metabolic inhibition via CYP2D6 and/or CYP3A4 and a comparison to quetiapine and ziprasidone.” J Clin Psychopharmacol 33(1): 3-10.

Imipramine

Dahl, M. L., et al. (1993). “Polymorphic 2-hydroxylation of desipramine. A population and family study.” Eur J Clin Pharmacol 44(5): 445-450.

Dahl, M. L., et al. (1992). “Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population.” Clin Pharmacol Ther 51(1): 12-17.

Kirchheiner, J., et al. (2005). “Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets.” Pharmacogenet Genomics 15(8): 579-587.

Madsen, H., et al. (1995). “Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms–a population study.” Br J Clin Pharmacol 39(4): 433-439.

Morinobu, S., et al. (1997). “Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy.” Psychiatry Clin Neurosci 51(4): 253-257.

Schenk, P. W., et al. (2010). “The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients.” Pharmacogenomics J 10(3): 219-225.

Shimoda, K., et al. (2000). “Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotype on the hydroxylation of desipramine.” Pharmacol Toxicol 86(6): 245-249.

Spina, E., et al. (1997). “Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects.” Br J Clin Pharmacol 43(3): 315-318.

Steiner, E., et al. (1988). “Inhibition of desipramine 2-hydroxylation by quinidine and quinine.” Clin Pharmacol Ther 43(5): 577-581.

Lamotrigine

Argikar, U. A. and R. P. Remmel (2009). “Variation in glucuronidation of lamotrigine in human liver microsomes.” Xenobiotica 39(5): 355-363.

Chen, H., et al. (2009). “Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy.” Drug Metab Dispos 37(9): 1841-1847.

Gulcebi, M. I., et al. (2011). “The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy.” Epilepsy Res 95(1-2): 1-8.

Rowland, A., et al. (2006). “In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction.”Drug Metab Dispos 34(6): 1055-1062.

Wang, Q., et al. (2015). “Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy.” Drug Metab Pharmacokinet 30(3): 209-213.

Levomilnacipran(rely on PI)

Chen, L., et al. (2015). “Evaluation of Cytochrome P450 (CYP) 3A4-Based Interactions of Levomilnacipran with Ketoconazole, Carbamazepine or Alprazolam in Healthy Subjects.” Clin Drug Investig 35(10): 601-612.

Lemborexant

Landry, I., et al. (2021). “Evaluation of the CYP3A and CYP2B6 Drug-Drug Interaction Potential of Lemborexant.” Clin. Pharmacol. Drug Dev. 10(6): 681-690.

Lorazepam

Chung, J. Y., et al. (2005). “Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers.” Clin Pharmacol Ther 77(6): 486-494.

Mijderwijk, H., et al. (2016). “Implication of UGT2B15 Genotype Polymorphism on Postoperative Anxiety Levels in Patients Receiving Lorazepam Premedication.” Anesth Analg 123(5): 1109-1115.

Uchaipichat, V., et al. (2013). “The glucuronidation of R- and S-lorazepam: human liver microsomal kinetics, UDP-glucuronosyltransferase enzyme selectivity, and inhibition by drugs.” Drug Metab Dispos 41(6): 1273-1284.

Lumateperone

Caplyta FDA Package Insert

Davis, R. E. Correll, C. U. (2016). “ITI-007 in the treatment of schizophrenia: from novel pharmacology to clinical outcomes.” Expert review of neurotherapeutics16(6), 601–614.

Lurasidone

Greenblatt, D. J., et al. (2018). “Sustained Impairment of Lurasidone Clearance After Discontinuation of Posaconazole: Impact of Obesity, and Implications for Patient Safety.” J Clin Psychopharmacol 38(4): 289-295.

Methylphenidate & Dexmethylphenidate

Lyauk, Y., et al. (2016). “Population Pharmacokinetics of Methylphenidate in Healthy Adults Emphasizing Novel and Known Effects of Several Carboxylesterase 1 (CES1) Variants.” Clin. Transl. Sci. 9: 337–345.

Nemoda, Z., et al. (2009). “Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD.” Neuropharmacology 57: 731–733.

Stage, C., et al. (2017). “The impact of CES1 genotypes on the pharmacokinetics of methylphenidate in healthy Danish subjects.”Br. J. Clin. Pharmacol. 83: 1506–1514.

Stage, C., et al. (2019). “The impact of human CES1 genetic variation on enzyme activity assessed by ritalinic acid/methylphenidate ratios.”Basic Clin. Pharmacol. Toxicol. 125: 54–61.

Sun, Z., et al. (2004). “Methylphenidate is Stereoselectively Hydrolyzed by Human Carboxylesterase CES1A1.” The Journal of Pharmacology and Experimental Therapeutics 310(2): 469–476.

Zhu, H., et al. (2008). “Two CES1 Gene Mutations Lead to Dysfunctional Carboxylesterase 1 Activity in Man: Clinical Significance and Molecular Basis.” The American Journal of Human Genetics82: 1241–1248.

Mirtazapine

Borobia, A. M., et al. (2009). “Influence of sex and CYP2D6 genotype on mirtazapine disposition, evaluated in Spanish healthy volunteers.” Pharmacol Res 59(6): 393-398.

Brockmoller, J., et al. (2007). “Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects.” Clin Pharmacol Ther 81(5): 699-707.

Kirchheiner, J., et al. (2004). “Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers.” J Clin Psychopharmacol 24(6): 647-652.

Lind, A. B., et al. (2009). “Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour.” Clin Pharmacokinet 48(1): 63-70.

Okubo, M., et al. (2015). “Effects of cytochrome P450 2D6 and 3A5 genotypes and possible coadministered medicines on the metabolic clearance of antidepressant mirtazapine in Japanese patients.” Biochem Pharmacol 93(1): 104-109.

Stormer, E., et al. (2000). “Scaling drug biotransformation data from cDNA-expressed cytochrome P-450 to human liver: a comparison of relative activity factors and human liver abundance in studies of mirtazapine metabolism.” J Pharmacol Exp Ther 295(2): 793-801.

Stormer, E., et al. (2000). “Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4.” Drug Metab Dispos 28(10): 1168-1175.

Nortriptyline

Steimer, W., et al. (2004). “Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers.” Clin Chem 50(9): 1623-1633.

Yue, Q. Y., et al. (1998). “Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes.” Clin Pharmacol Ther 64(4): 384-390.

Olanzapine

Augustin, M., et al. (2018). “Differences in Duloxetine Dosing Strategies in Smoking and Nonsmoking Patients: Therapeutic Drug Monitoring Uncovers the Impact on Drug Metabolism.” J Clin Psychiatry 79(5).

Carrillo, J. A., et al. (2003). “Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine.” J Clin Psychopharmacol 23(2): 119-127.

Czerwensky, F., et al. (2015). “CYP1A2*1D and *1F polymorphisms have a significant impact on olanzapine serum concentrations.” Ther Drug Monit 37(2): 152-160.

Erickson-Ridout, K. K., et al. (2011). “Olanzapine metabolism and the significance of UGT1A448V and UGT2B1067Y variants.” Pharmacogenet Genomics 21(9): 539-551.

Kato, Y., et al. (2013). “Human UDP-glucuronosyltransferase (UGT) 2B10 in drug N-glucuronidation: substrate screening and comparison with UGT1A3 and UGT1A4.” Drug Metab Dispos 41(7): 1389-1397.

Korprasertthaworn, P., et al. (2015). “In Vitro Characterization of the Human Liver Microsomal Kinetics and Reaction Phenotyping of Olanzapine Metabolism.” Drug Metab Dispos 43(11): 1806-1814.

Linnet, K. (2002). “Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes.” Hum Psychopharmacol 17(5): 233-238.

Ring, B. J., et al. (1996). “Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine.” J Pharmacol Exp Ther 276(2): 658-666.

Oxazepam

Court, M. H., et al. (2004). “UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver.” J Pharmacol Exp Ther 310(2): 656-665.

He, X., et al. (2009). “Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion.” Br J Clin Pharmacol 68(5): 721-730.

Paliperidone

Berwaerts, J., et al. (2009). “The effects of paroxetine on the pharmacokinetics of paliperidone extended-release tablets.” Pharmacopsychiatry 42(4): 158-163.

Paroxetine

Charlier, C., et al. (2003). “Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine.” Ther Drug Monit 25(6): 738-742.

Chen, R., et al. (2015). “Cytochrome P450 2D6 genotype affects the pharmacokinetics of controlled-release paroxetine in healthy Chinese subjects: comparison of traditional phenotype and activity score systems.” Eur J Clin Pharmacol 71(7): 835-841.

Jornil, J., et al. (2010). “Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator.” Drug Metab Dispos 38(3): 376-385.

Yoon, Y. R., et al. (2000). “Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects.” Clin Pharmacol Ther 67(5): 567-576.

Perphenazine

Aklillu, E., et al. (2007). “CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine.” Pharmacogenet Genomics 17(11): 989-993.

Dahl-Puustinen, M. L., et al. (1989). “Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings.” Clin Pharmacol Ther 46(1): 78-81.

Jerling, M., et al. (1996). “The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol.”Clin Pharmacol Ther 59(4): 423-428.

Linnet, K. and O. Wiborg (1996). “Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism.” Clin Pharmacol Ther 60(1): 41-47.

Olesen, O. V. and K. Linnet (2000). “Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine.” Br J Clin Pharmacol 50(6): 563-571.

Ozdemir, V., et al. (2007). “CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited.” Pharmacogenet Genomics 17(5): 339-347.

Ozdemir, V., et al. (1997). “Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo.” Clin Pharmacol Ther 62(3): 334-347.

Propranolol

Gardner, S. K., et al. (1980). “Effect of smoking on the elimination of propranolol hydrochloride.” Int J Clin Pharmacol Ther Toxicol 18(10): 421-424.

Johnson, J. A., et al. (2000). “CYP1A2 and CYP2D6 4-hydroxylate propranolol and both reactions exhibit racial differences.” J Pharmacol Exp Ther 294(3): 1099-1105.

Masubuchi, Y., et al. (1994). “Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase.” Drug Metab Dispos 22(6): 909-915.

McGinnity, D. F., et al. (2000). “Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s.” Drug Metab Dispos 28(11): 1327-1334.

Sowinski, K. M. and B. S. Burlew (1997). “Impact of CYP2D6 poor metabolizer phenotype on propranolol pharmacokinetics and response.” Pharmacotherapy 17(6): 1305-1310.

Yoshimoto, K., et al. (1995). “Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers–N-desisopropylation is mediated mainly by CYP1A2.” Br J Clin Pharmacol 39(4): 421-431.

Zhou, H. H., et al. (1990). “Quinidine reduces clearance of (+)-propranolol more than (-)-propranolol through marked reduction in 4-hydroxylation.” Clin Pharmacol Ther 47(6): 686-693.

Quetiapine

Bakken, G. V., et al. (2015). “Impact of genetic variability in CYP2D6, CYP3A5, and ABCB1 on serum concentrations of quetiapine and N-desalkylquetiapine in psychiatric patients.” Ther Drug Monit 37(2): 256-261.

Bakken, G. V., et al. (2012). “Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro.” Drug Metab Dispos 40(9): 1778-1784.

Bakken, G. V., et al. (2009). “Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5.” Drug Metab Dispos 37(2): 254-258.

Grimm, S. W., et al. (2006). “Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics.” Br J Clin Pharmacol 61(1): 58-69.

Li, K. Y., et al. (2005). “Metabolic mechanism of quetiapine in vivo with clinical therapeutic dose.” Methods Find Exp Clin Pharmacol 27(2): 83-86.

van der Weide, K. and J. van der Weide (2014). “The influence of the CYP3A4*22 polymorphism on serum concentration of quetiapine in psychiatric patients.” J Clin Psychopharmacol 34(2): 256-260.

Risperidone

Berecz, R., et al. (2002). “Relationship between risperidone and 9-hydroxy-risperidone plasma concentrations and CYP2D6 enzyme activity in psychiatric patients.” Pharmacopsychiatry 35(6): 231-234.

Fang, J., et al. (1999). “Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4.” Naunyn Schmiedebergs Arch Pharmacol 359(2): 147-151.

Gasso, P., et al. (2014). “Effect of CYP2D6 on risperidone pharmacokinetics and extrapyramidal symptoms in healthy volunteers: results from a pharmacogenetic clinical trial.” Pharmacogenomics 15(1): 17-28.

Huang, M. L., et al. (1993). “Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects.” Clin Pharmacol Ther 54(3): 257-268.

Jukic, M. M., et al. (2019). “Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: a retrospective, cohort study.” Lancet Psychiatry 6(5): 418-426.

Kang, R. H., et al. (2009). “Effects of CYP2D6 and CYP3A5 genotypes on the plasma concentrations of risperidone and 9-hydroxyrisperidone in Korean schizophrenic patients.” J Clin Psychopharmacol 29(3): 272-277.

Llerena, A., et al. (2004). “QTc interval, CYP2D6 and CYP2C9 genotypes and risperidone plasma concentrations.” J Psychopharmacol 18(2): 189-193.

Locatelli, I., et al. (2010). “A population pharmacokinetic evaluation of the influence of CYP2D6 genotype on risperidone metabolism in patients with acute episode of schizophrenia.” Eur J Pharm Sci 41(2): 289-298.

Mannens, G., et al. (1993). “Absorption, metabolism, and excretion of risperidone in humans.” Drug Metab Dispos 21(6): 1134-1141.

Molden, E., et al. (2016). “Impact of Ageing on Serum Concentrations of Risperidone and Its Active Metabolite in Patients with Known CYP2D6 Genotype.” Basic Clin Pharmacol Toxicol 119(5): 470-475.

Scordo, M. G., et al. (1999). “Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone.” Psychopharmacology (Berl) 147(3): 300-305.

Spina, E., et al. (2002). “Inhibition of risperidone metabolism by fluoxetine in patients with schizophrenia: a clinically relevant pharmacokinetic drug interaction.” J Clin Psychopharmacol 22(4): 419-423.

Vanwong, N., et al. (2016). “Detection of CYP2D6 polymorphism using Luminex xTAG technology in autism spectrum disorder: CYP2D6 activity score and its association with risperidone levels.” Drug Metab Pharmacokinet 31(2): 156-162.

Yagihashi, T., et al. (2009). “Effects of the CYP2D6*10 alleles and co-medication with CYP2D6-dependent drugs on risperidone metabolism in patients with schizophrenia.” Hum Psychopharmacol 24(4): 301-308.

Yasui-Furukori, N., et al. (2001). “Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes.” Drug Metab Dispos 29(10): 1263-1268.

Selegiline

Bach, M. V., et al. (2000). “Metabolism of N,N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in a human cell line.” Xenobiotica 30(3): 297-306.

Benetton, S. A., et al. (2007). “P450 phenotyping of the metabolism of selegiline to desmethylselegiline and methamphetamine.” Drug Metab Pharmacokinet 22(2): 78-87.

Hidestrand, M., et al. (2001). “CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes.” Drug Metab Dispos 29(11): 1480-1484.

Kamada, T., et al. (2002). “Metabolism of selegiline hydrochloride, a selective monoamine b-type inhibitor, in human liver microsomes.” Drug Metab Pharmacokinet 17(3): 199-206.

Lin, L. Y., et al. (1997). “Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6.” Drug Metab Dispos 25(9): 1059-1064.

Salonen, J. S., et al. (2003). “Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems.” Drug Metab Dispos 31(9): 1093-1102.

Sertraline

Bråten, Line S., et al. “Impact of CYP2C19 Genotype on Sertraline Exposure in 1200 Scandinavian Patients.”Neuropsychopharmacology, vol. 45, no. 3, 2019, pp. 570–576., doi:10.1038/s41386-019-0554-x.

Hamelin, Bettina A., et al. “The Disposition of Fluoxetine but Not Sertraline Is Altered in Poor Metabolizers of Debrisoquin.”Clinical Pharmacology & Therapeutics, vol. 60, no. 5, 1996, pp. 512–521., doi:10.1016/s0009-9236(96)90147-2.

Kobayashi, K., et al. (1999). “Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro.” Drug Metab Dispos 27(7): 763-766.

Lloret-Linares, C., et al. (2018). “Phenotypic Assessment of Drug Metabolic Pathways and P-Glycoprotein in Patients Treated With Antidepressants in an Ambulatory Setting.” J Clin Psychiatry 79(2).

Obach, R. S., et al. (2005). “Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study.” Drug Metab Dispos 33(2): 262-270.

Palacharla, Raghava Choudary, et al. “Quantitative in Vitro Phenotyping and Prediction of Drug Interaction Potential of CYP2B6 Substrates as Victims.” Xenobiotica, vol. 48, no. 7, 2017, pp. 663–675., doi:10.1080/00498254.2017.1354267.

Rudberg, I., et al. (2008). “Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients.” Eur J Clin Pharmacol 64(12): 1181-1188.

Saiz-Rodriguez, M., et al. (2018). “Effect of Polymorphisms on the Pharmacokinetics, Pharmacodynamics and Safety of Sertraline in Healthy Volunteers.” Basic Clin Pharmacol Toxicol 122(5): 501-511.

Wang, J. H., et al. (2001). “Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19.” Clin Pharmacol Ther 70(1): 42-47.

Xu, Z. H., et al. (1999). “Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human liver microsomes.” Br J Clin Pharmacol 48(3): 416-423.

Yuce-Artun, N., et al. (2016). “Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients.” Int J Clin Pharm 38(2): 388-394.

Suvorexant

Cui, D., et al. (2016). “In vitro and in vivo Characterisation of the Metabolism and Disposition of Suvorexant in Humans.” Xenobiotica. 46(10): 882-895.

Wrishko, R. E., et al. (2019). “Effect of CYP3A Inhibition and Induction on the Pharmacokinetics of Suvorexant: Two Phase I, Open-Label, Fixed-Sequence Trials in Healthy Subjects.” Clin. Drug Investig. 39(5): 441-451.

Temazepam

Acikgoz, A., et al. (2009). “Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes.” Toxicol Appl Pharmacol 234(2): 179-191.

Court, M. H., et al. (2004). “UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver.” J Pharmacol Exp Ther 310(2): 656-665.

He, X., et al. (2009). “Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion.” Br J Clin Pharmacol 68(5): 721-730.

Thioridazine

Llerena, A., et al. (2002). “QTc interval lengthening is related to CYP2D6 hydroxylation capacity and plasma concentration of thioridazine in patients.” J Psychopharmacol 16(4): 361-364.

Berecz, R., et al. (2003). “Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype.” Eur J Clin Pharmacol 59(1): 45-50.

Carrillo, J. A., et al. (1999). “Pharmacokinetic interaction of fluvoxamine and thioridazine in schizophrenic patients.” J Clin Psychopharmacol 19(6): 494-499.

Llerena, A., et al. (2000). “Use of the mesoridazine/thioridazine ratio as a marker for CYP2D6 enzyme activity.” Ther Drug Monit 22(4): 397-401.

Thanacoody, R. H., et al. (2007). “Factors affecting drug concentrations and QT interval during thioridazine therapy.” Clin Pharmacol Ther 82(5): 555-565.

Wen, B. and M. Zhou (2009). “Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s.” Chem Biol Interact 181(2): 220-226.

Wojcikowski, J., et al. (2006). “Characterization of human cytochrome p450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine.” Drug Metab Dispos 34(3): 471-476.

Thiothixene

Ereshefsky, L., et al. (1991). “Thiothixene pharmacokinetic interactions: a study of hepatic enzyme inducers, clearance inhibitors, and demographic variables.”J Clin Psychopharmacol 11(5): 296-301.

Trazodone

Rotzinger, S., et al. (1998). “Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources.” Drug Metab Dispos 26(6): 572-575.

Rotzinger, S., et al. (1998). “Human CYP2D6 and metabolism of m-chlorophenylpiperazine.” Biol Psychiatry 44(11): 1185-1191.

Wen, B., et al. (2008). “Detection of novel reactive metabolites of trazodone: evidence for CYP2D6-mediated bioactivation of m-chlorophenylpiperazine.” Drug Metab Dispos 36(5): 841-850.

Valproic Acid

Argikar, U. A. and R. P. Remmel (2009). “Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10.” Drug Metab Dispos 37(1): 229-236.

Ho, P. C., et al. (2003). “Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes.” Pharmacogenomics J 3(6): 335-342.

Jiang, D., et al. (2009). “Effects of CYP2C19 and CYP2C9 genotypes on pharmacokinetic variability of valproic acid in Chinese epileptic patients: nonlinear mixed-effect modeling.” Eur J Clin Pharmacol 65(12): 1187-1193.

Kiang, T. K., et al. (2006). “Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype.” Toxicol Sci 94(2): 261-271.

Sadeque, A. J., et al. (1997). “Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid.” J Pharmacol Exp Ther 283(2): 698-703.

Venlafaxine

Fogelman, S. M., et al. (1999). “O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants.” Neuropsychopharmacology 20(5): 480-490.

Fukuda, T., et al. (2000). “The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population.” Eur J Clin Pharmacol 56(2): 175-180.

Fukuda, T., et al. (1999). “Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers.” Br J Clin Pharmacol 47(4): 450-453.

Hermann, M., et al. (2008). “Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele.” Eur J Clin Pharmacol 64(5): 483-487.

Jiang, F., et al. (2015). “The influences of CYP2D6 genotypes and drug interactions on the pharmacokinetics of venlafaxine: exploring predictive biomarkers for treatment outcomes.” Psychopharmacology (Berl) 232(11): 1899-1909.

Lessard, E., et al. (1999). “Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans.” Pharmacogenetics 9(4): 435-443.

Lindh, J. D., et al. (2003). “Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine.” Eur J Clin Pharmacol 59(5-6): 401-406.

McAlpine, D. E., et al. (2011). “Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine.” Ther Drug Monit 33(1): 14-20.

Nichols, A. I., et al. (2011). “Pharmacokinetics of venlafaxine extended release 75 mg and desvenlafaxine 50 mg in healthy CYP2D6 extensive and poor metabolizers: a randomized, open-label, two-period, parallel-group, crossover study.” Clin Drug Investig 31(3): 155-167.

Shams, M. E., et al. (2006). “CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine.” J Clin Pharm Ther 31(5): 493-502.

Veefkind, A. H., et al. (2000). “Venlafaxine serum levels and CYP2D6 genotype.” Ther Drug Monit 22(2): 202-208.

Vilazodone (rely on PI)

Boinpally, R., et al. (2014). “Influence of CYP3A4 induction/inhibition on the pharmacokinetics of vilazodone in healthy subjects.” Clin Ther 36(11): 1638-1649.

Viloxazine

Case, D. E. & Reeves, P. R. (1975). “The Disposition and Metabolism of I.C.I 58,834 (Viloxazine) in Humans.” Xenobiotica. 5(2): 113-129.

Yu, Chungping. (2020). “Metabolism and in vitro Drug-Drug Interaction Assessment of Viloxazine.” Xenobiotica. 50(11): 1285-1300.

Vortioxetine

Areberg, J., et al. (2014). “Population pharmacokinetic meta-analysis of vortioxetine in healthy individuals.” Basic Clin Pharmacol Toxicol 115(6): 552-559.

Chen, G., et al. (2013). “Pharmacokinetic drug interactions involving vortioxetine (Lu AA21004), a multimodal antidepressant.” Clin Drug Investig 33(10): 727-736.

Hvenegaard, M. G., et al. (2012). “Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004.” Drug Metab Dispos 40(7): 1357-1365.

Ziprasidone

Cherma, M. D., et al. (2008). “Therapeutic drug monitoring of ziprasidone in a clinical treatment setting.” Ther Drug Monit 30(6): 682-688.

Miceli, J. J., et al. (2000). “The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers.” Br J Clin Pharmacol 49 Suppl 1: 65s-70s.

Miceli, J. J., et al. (2000). “The effects of ketoconazole on ziprasidone pharmacokinetics–a placebo-controlled crossover study in healthy volunteers.” Br J Clin Pharmacol 49 Suppl 1: 71s-76s.

Prakash, C., et al. (2000). “Identification of the major human liver cytochrome P450 isoform(s) responsible for the formation of the primary metabolites of ziprasidone and prediction of possible drug interactions.” Br J Clin Pharmacol 49 Suppl 1: 35s-42s.

Zolpidem

Farkas, D., et al. (2009). “Short-term clarithromycin administration impairs clearance and enhances pharmacodynamic effects of trazodone but not of zolpidem.” Clin Pharmacol Ther 85(6): 644-650.

Olubodun, J. O., et al. (2002). “Zolpidem pharmacokinetic properties in young females: influence of smoking and oral contraceptive use.” J Clin Pharmacol 42(10): 1142-1146.

Pichard, L., et al. (1995). “Oxidative metabolism of zolpidem by human liver cytochrome P450S.” Drug Metab Dispos 23(11): 1253-1262.

Shen, M., et al. (2013). “CYP3A4 and CYP2C19 genetic polymorphisms and zolpidem metabolism in the Chinese Han population: a pilot study.” Forensic Sci Int 227(1-3): 77-81.

Vlase, L., et al. (2012). “Effect of fluvoxamine on the pharmokinetics of zolpidem: a two-treatment period study in healthy volunteers.” Clin Exp Pharmacol Physiol 39(1): 9-12.

Von Moltke, L. L., et al. (1999). “Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations.” Br J Clin Pharmacol 48(1): 89-97.

ADRA2A

Polanczyk, G. et al. Association of the adrenergic alpha2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64, 218-224, doi:10.1001/archpsyc.64.2.218 (2007).

da Silva, T. L. et al. Adrenergic alpha2A receptor gene and response to methylphenidate in attention-deficit/hyperactivity disorder-predominantly inattentive type. J Neural Transm (Vienna) 115, 341-345, doi:10.1007/s00702-007-0835-0 (2008).

Cheon, K. A., Cho, D. Y., Koo, M. S., Song, D. H. & Namkoong, K. Association between homozygosity of a G allele of the alpha-2a-adrenergic receptor gene and methylphenidate response in Korean children and adolescents with attention-deficit/hyperactivity disorder. Biol Psychiatry 65, 564-570, doi:10.1016/j.biopsych.2008.12.003 (2009).

Myer, N. M., Boland, J. R. & Faraone, S. V. Pharmacogenetics predictors of methylphenidate efficacy in childhood ADHD. Mol Psychiatry 23, 1929-1936, doi:10.1038/mp.2017.234 (2018).

HLA-B*1502 and HLA-A*3101

Grover, S., et al. (2014). “HLA alleles and hypersensitivity to carbamazepine: an updated systematic review with meta-analysis.” Pharmacogenet Genomics 24(2): 94-112.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/016608s101,018281s048lbl.pdf

https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021014s026,021285s021lbl.pdf

Tangamornsuksan, W., et al. (2018). “Association between HLA genotypes and oxcarbazepine-induced cutaneous adverse drug reactions: a systematic review and meta-analysis.” J Pharm Pharm Sci 21(1): 1-18.

Deng, Y., et al. (2018). “Association between HLA alleles and lamotrigine-induced cutaneous adverse drug reactions in Asian populations: A meta-analysis. Seizure 60: 163-171.

HTR2A

Kato, M., et al. (2006). “Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 53(4): 186-195.

Murphy, G.M., et al. (2003). “Pharmacogenetics of antidepressant medication intolerance.” Am J Psychiatry 160(10): 1830-1835.

Wilkie, M.J., et al. (2009). “Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy.” Pharmacogenomics J 9(1): 61-70.

SLC6A4

Karlovic, D., et al. (2013). “Serotonin transporter gene (5-HTTLPR) polymorphism and efficacy of selective serotonin reuptake inhibitors—do we have sufficient evidence for clinical practice.” Acta Clin Croat 52(3): 353-362.

Porcelli, S., et al. (2012). “Meta-analysis of serotonin transporter gene polymorphism (5-HTTLPR) association with antidepressant efficacy.” Eur Neuropsychopharmacol 22(4): 239-258.

Serretti, A., et al. (2007). “Meta-analysis of serotonin transporter gene polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients.” Mol Psychiatry 12(3): 247-257.

Joyce, P. R., et al.(2003). “Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporterand G protein β3 subunit as predictors of response to fluoxetine and nortriptyline.” Int J Neuropsychopharmacol 6(4): 339-346.

Perlis, R. H., et al.(2003).“Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol Psychiatry54(9):879–883.

Smeraldi, E., et al. (1998). “Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine.” Mol Psychiatry3(6): 508–511.

Zanardi, R., et al. (2001).“Factors affecting fluvoxamine antidepressant activity: Influence of pindolol and 5-HTTLPR in delusional and nondelusional depression.”Biol. Psychiatry50(5): 323–330.

Take the next step